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Abstract 
 
A series of experimental powder metallurgy disk alloys were evaluated for their processing 
characteristics and high temperature mechanical properties.  Powder of each alloy was hot 
compacted, extruded, and isothermally forged into subscale disks.  Disks were subsolvus and 
supersolvus heat treated, then quenched using procedures designed to reproduce the cooling 
paths expected in large-scale disks.  Mechanical tests were then performed at 538, 704, and 
815 °C.  Several alloys had superior tensile and creep properties at 704 °C and higher 
temperatures, but were difficult to process and prone to quench cracking, chiefly due to their 
high gamma prime solvus temperature.  Several other alloys had more favorable processing 
characteristics due to their lower gamma prime solvus temperature and balanced time-
dependent properties at 704 °C.  Results indicate an experimental low solvus, high refractory 
alloy can build upon the best attributes of all these alloys, giving exceptional tensile and creep 
properties at high temperatures with good processing characteristics due to a low gamma prime 
solvus.  

Introduction 
 
Advanced powder metallurgy disk alloys such as ME3 and Alloy 10 were designed using 
divergent screening and optimization approaches for composition and processing variables in 
several cooperative government-industry programs.  ME3 was developed and scaled-up by the 
team of NASA, General Electric, and Pratt & Whitney in the NASA High Speed 
Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program to 
have extended durability at 650 °C in large engine compressor and turbine disks [1].  Alloy 10 
was developed by Honeywell Engine Systems to produce superior tensile, creep, and fatigue 
resistance in smaller engine disks at temperatures above 650 °C [2]. 
 
There is a long-term need for disks with higher rim temperature capabilities of 704 °C or more.  
This would allow higher compressor exit (T3) temperatures and allow the full utilization of 
advanced combustor and airfoil concepts under development.  The balance of mechanical 
properties necessary to achieve these temperature capabilities could vary with engine size and 
engine cycle design, as well as the particulars of a selected potential disk design and location in 
an engine.  Such detailed design assessments are beyond the scope of this study.  However, a 
brief screening characterization of the mechanical properties of experimental disk alloys at high 
temperature would allow initial assessments of the balance of properties produced by modified 
chemistries. 
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Variations in disk alloy chemistry can be used to help achieve these improvements in 
temperature capability.  This can be assessed by processing and testing subscale disks made 
with intentionally varied experimental disk alloy powder chemistries.  However, a very 
important consideration in heat treating subscale disks is the quenching procedures after 
solution heat treatments.  Small subscale disks having low mass tend to cool much faster than 
large-scale disks for a given quenching procedure.  This can produce unrealistic mechanical 
properties in the subscale material, which cannot be easily attained in large scale disks.  
Therefore, modified quenching procedures are necessary for subscale disks. 
 
The objective of this study was to develop and perform realistic quenching heat treatments on 
subscale disks of several advanced powder metallurgy disk superalloys.  The realistic 
quenching heat treatments were first developed and verified to give in subscale disks 
comparable mechanical properties to large scale disks.  The high temperature mechanical 
properties of experimental superalloys were then screened in search of an alloy having high 
temperature capability.  

Materials and Procedure 
 
A series of experimental advanced powder metallurgy disk alloys were evaluated for their 
processing characteristics and high temperature mechanical properties.  The overall variations 
of composition in weight percent among these alloys were 3.3-4.0 Al, 0.024-.030 B, 0.028-.050 
C, 15.2-20.7 Co, 9.5-13.3 Cr, 2.5-3.7 Mo, 0-1.9 Nb, 1.0-2.6 Ta, 3.3-3.8 Ti, 2.1-5.9 W, 0.05-0.1 
Zr, and balance Ni.  Powder of each superalloy was hot compacted and extruded.  Extrusion 
segments of the superalloys were machined to mults 7 to 8 cm dia. and 15 to 16 cm long, then 
forged into subscale disks about 13 to 14 cm in diameter and 4 cm thick by Wyman-Gordon 
Forgings. They were then heat treated using several procedures. 
 
Mechanical test conditions of subscale disks after heat treatments were selected to screen high 
temperature properties and allow limited direct comparisons with specimen tests from the scale-
up disks. 
 
Tensile Tests 
 
Tests of subscale material were performed at Dickson Testing Company and NASA GRC on 
specimens machined by Metcut Research Associates having a gage diameter of 0.41 cm and 
gage length of 2.5 cm in a uniaxial test machine employing a resistance heating furnace and 
axial extensometer according to ASTM E21. 
 
Creep Tests 
 
Machining of subscale disk creep specimens was performed by Metcut Research Associates.  
Specimens having a gage diameter of 0.64 cm and gage length of 3.8 cm were machined and 
tested in uniaxial lever arm constant load creep frames using resistance heating furnaces and 
shoulder-mounted extensometers.  The creep tests were performed by NASA GRC and Metcut 
Research Associates according to ASTM E139. 
 
Fatigue Crack Growth Tests 
 
Machining of surface flaw fatigue crack growth specimens from subscale disks was performed 
by BITEC CNC Machining.  All specimens had a rectangular gage section 1 cm wide and  
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0.46 cm thick, with a surface flaw about 0.036 cm wide and 0.018 cm deep produced by 
electro-discharge machining.  The fatigue crack growth specimens were then tested at NASA 
GRC.  Tests were performed in a closed-loop servohydraulic test machine using resistance 
heating and potential drop measurement of crack growth.  Pre-cracking was performed at room 
temperature.  Tests were then performed at elevated temperatures using a maximum stress of 
690 MPa.  Cyclic dwell tests were performed at 704 °C with a 90 s dwell at maximum stress, 
using a stress ratio of 0.05. 
 
Grain sizes were determined according to ASTM E112 linear intercept procedures using 
circular grid overlays. 

Results and Discussion 
 
Heat Treatments and Microstructure Response 
 
Grain size as a function of solution heat treatment temperature was first screened for all alloys 
using small coupons.  Grain size increased nonlinearly with temperature as shown in Fig. 1.  At 
low solution temperatures the grain size was relatively stable at ASTM 12-11 (5 to 10 µm).  
Increasing temperature to a certain level produced a sharp step increase in grain size to ASTM 
7-6 (40 to 55 µm).  This was due to the dissolving of most of the prior existing coarse 
“primary” γ΄ precipitates which constrain grain growth.  The temperature producing a 
transitioning grain size of ASTM 9.5 (13 µm) within the step increase was selected to define a 
practical “solvus” temperature of the alloy which dissolved enough of the “primary” γ΄ 
precipitates (90 to 95 percent) to allow the grain growth.  The solvus temperature producing this 
sharp increase in grain size varied among the alloys.  ME3 and a group of experimental “LS” 
series alloys had low solvus temperatures of 1150 to 1160 °C.  Alloy 10 and a group of 
experimental “HS” series alloys had high solvus temperatures of 1170 to 1190 °C. 
 
It was intended that the subscale disks be quenched from the solution heat treatments at cooling 
rates typically expected at near-surface to deeply imbedded locations of large scale disks of one 
to several hundred pounds weight which were oil quenched.  Due to the much lower weight and 
volume of the subscale disks, this required design and screening of slower cooling procedures 
than typically employed for large disks.  A procedure of fan air cooling starting 2 minutes after 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Grain size versus solution heat treatment temperature. 
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removal from the furnace was adopted to simulate deeply imbedded bore locations in large 
disks.  An additional disk of each alloy was directly oil quenched starting 30 seconds after 
removal from the furnace, to simulate faster cooling rates near the surfaces of large disks.  The 
cooling temperature-time data of thermocouples embedded in the middle (“bore”) and near the 
corner (“rim”) of a subscale disk are compared in Fig. 2.  The temperature-time paths of cooling 
measured in the subscale disks was similar to that expected for large disks.  The thermocouple 
temperature-time data recorded from 4 thermocouples embedded in one of the subscale disks 
during fan air and oil quenching cycles was analyzed using a commercial heat transfer 
computer code in order to assign approximate cooling rates, averaged over the temperature 
range of solution temperature to 815 °C, for each specimen.  All subscale disks were 
subsequently given an aging heat treatment of 815 °C/8h. 
 
The response to quenching varied among the alloys.  All disks survived quenching from 
subsolvus solution temperatures.  However, several of the disks formed edge cracks of 1 to 
8 cm length during quenching from supersolvus solution temperatures.  The location and 
intergranular mode of these quench cracks was comparable to that previously observed in large 
scale disks, Fig. 3.  Comparing among alloys, alloys having the high solvus temperatures and 
corresponding supersolvus solution heat treatment temperatures had a propensity of cracking.  
This has also been observed in preliminary repeated testing of tensile and coin-sized disk 
specimens of Alloy 10 and ME3, respectively [3, 4].  Therefore, it will be important to consider 
solvus temperature when comparing the resulting mechanical properties among the alloys. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Thermocouple temperature versus time at different locations in subscale disks. 
 
 

 
(a)    (b) 

Figure 3: Quench cracks in high solvus alloy disks: (a) Subscale disk (b) Large scale disk. 
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(a)    (b) 

Figure 4: Typical microstructures: (a) Supersolvus solution heat treated, then oil quenched 
(b) Supersolvus solution heat treated, fan air cooled. 

 
Typical grain microstructures in optical images of etched metallographic sections of specimen 
grip sections are shown in Fig. 4.  These microstructures were from oil quenched and fan 
cooled supersolvus heat treated disks.  Supersolvus material heat treated at about 15 °C above 
each alloy’s solvus temperature had a mean ASTM grain size of 7.1 with a standard deviation 
of 0.3, and an ALA ASTM grain size of 3.1 with a standard deviation of 0.4 for all alloys.  
Serrated grain boundaries were usually observed for the slower cooled fan air quenched 
material, while straighter grain boundaries were observed for the faster cooled oil quenched 
material.  Subsolvus material heat treated at about 25 °C below each alloy’s solvus temperature 
had a mean ASTM grain size of 12 with a standard deviation of 0.2, and an ALA ASTM grain 
size of 7.4 with a standard deviation of 0.9 for all alloys. 
 
Mechanical Properties 

 
Subscale versus Large Scale Properties. ME3 tensile strengths and creep lives are compared 
from specimen tests of the subscale disks and large contoured turbine disks over 60 cm in 
diameter and 10 cm in maximum bore thickness in Fig. 5.  The scatter in response observed at 
each test condition for each disk could be attributed in part to variations in local cooling rate, 
with higher cooling rates producing higher tensile strength and creep life [1, 5]. The mechanical 
properties were quite comparable for the two disks, indicating the subscale heat treatments 
could produce mechanical properties representative of large scale disk material. 
 
Tensile Response. Ultimate strengths are compared as functions of solvus temperature among 
all alloys for supersolvus and subsolvus heat treated subscale disks in Figs. 6 and 7.  Strength 
decreased with increasing temperature for both supersolvus and subsolvus heat treated material.  
Supersolvus material had slightly lower strength than subsolvus material at 704 °C.  Alloys 
with higher solvus temperature had generally higher strengths than the lower solvus alloys.  But 
several lower solvus alloys had strengths approaching the higher solvus alloy levels. 
 
Creep Properties. Times to 0.2 percent creep are compared as functions of solvus temperature 
among all alloys for supersolvus and subsolvus heat treated subscale as functions of solvus 
temperature disks in Figs. 8 and 9.  Creep response of the coarse grain supersolvus material was 
superior to that of the fine grain subsolvus material, due to grain size effects.  The examined 
alloys with higher solvus temperature had generally higher creep lives than the lower solvus 
alloys.  But several lower solvus alloys had lives approaching the higher solvus alloy levels. 
 
 

10 µm 
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(a)       (b) 

Figure 5: Supersolvus ME3 subscale versus large scale disk properties: (a) Tensile strength 
(b) Creep life.  

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

  (a)        (b) 

Figure 6: Supersolvus subscale disk tensile strength for all alloys: (a) 704 °C (b) 815 °C.  
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  (a)           (b) 

Figure 7: Subsolvus disk tensile strength for all alloys: (a) 538 °C (b) 704 °C. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (a)       (b) 

Figure 8: Supersolvus disk creep life for all alloys: (a) 704 °C/690 MPa 
(b) 815 °C/345 MPa.  
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Figure 9: Comparison of subsolvus subscale disk creep life for all alloys at  
704 °C/690 MPa. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Comparison of supersolvus subscale disk dwell crack growth rates for all alloys 
at 25 MPa*m0.5 in 704 °C/90 s dwell  tests. 
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the alloy.   ME3, Alloy 10, and several LS and HS series alloys had sufficient resistance to 
dwell crack growth. 
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(a)       (b) 

Figure 11: Balance of supersolvus tensile, creep, and solvus properties for all alloys: 
(a) 704 °C (b) 815 °C. 
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Figure 12: Balance of tensile, creep, and solvus properties for all subsolvus alloys. 
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Summary and Conclusions 
 
A series of subscale experimental powder metallurgy disk alloys were evaluated for their 
processing characteristics and high temperature mechanical properties.  Heat treatment 
procedures were developed which could reproduce in subscale disks the cooling paths and 
mechanical properties of large scale disks.  Several subscale alloys had superior tensile and 
creep properties at 704 °C and higher temperatures, but were difficult to process and prone to 
quench cracking, chiefly due to their high gamma prime solvus temperature.  Several other 
alloys had more favorable processing characteristics due to their lower gamma prime solvus 
temperature.  These alloys often had lower tensile and creep properties at high temperatures.  
Several experimental low solvus, high property alloys were identified which could build upon 
the best attributes of all these alloys, giving exceptional tensile and creep properties at high 
temperatures along with good processing characteristics due to a low gamma prime solvus. 
 
It can be concluded from this evaluation that: 
 

(1) Subscale evaluations of disk alloys can be designed to realistically reproduce the 
cooling paths and mechanical properties expected from large scale disks. 

(2) New disk alloy chemistries can be used to improve mechanical properties at high 
temperatures.  

(3) Alloys having high solvus temperature are more prone to form cracks during quenching.  
(4) An alloy can be designed to provide a low solvus temperature for ease in processing 

with exceptional tensile and creep properties at high temperatures. 
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Prepared for the 2003 Annual Meeting and Exhibition sponsored by The Minerals, Metals, and Materials Society,
San Diego, California, March 2–6, 2003. Timothy P. Gabb, John Gayda, and Jack Telesman, NASA Glenn Research
Center; Peter T. Kantzos, Ohio Aerospace Institute, Brook Park, Ohio 44142; William A. Konkel, Konkel Material
Consulting, 4605 Holly Drive, Bellaire, Texas 77410. Responsible person, Timothy P. Gabb, organization code 5120,
216–433–3272.

A series of experimental powder metallurgy disk alloys were evaluated for their processing characteristics and high
temperature mechanical properties. Powder of each alloy was hot compacted, extruded, and isothermally forged into
subscale disks. Disks were subsolvus and supersolvus heat treated, then quenched using procedures designed to
reproduce the cooling paths expected in large-scale disks. Mechanical tests were then performed at 538, 704, and
815°C. Several alloys had superior tensile and creep properties at 704°C and higher temperatures, but were difficult to
process and prone to quench cracking, chiefly due to their high gamma prime solvus temperature. Several other alloys
had more favorable processing characteristics due to their lower gamma prime solvus temperature and balanced time-
dependent properties at 704°C. Results indicate an experimental low solvus, high refractory alloy can build upon the
best attributes of all these alloys, giving exceptional tensile and creep properties at high temperatures with good
processing characteristics due to a low gamma prime solvus.
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